“Rotorcraft – Back to the Future”
A Discussion of the Past, Present, and Future of Rotorcraft

Presented by:

Oris E. Davis, Jr.
Director, Southern Europe
International Business Development (IBD)
Boeing Defense, Space & Security (BDS)
The Boeing Company
Phone: +39-06-45217787
oris.e.davis@boeing.com

Presented at:
The National President of Associazione Arma Aeronautica (AAA), The Future of Rotary Wing Symposium at the Center for High Defence Studies, Palazzo Salviati, Piazza della Rovere 83, Rome, Italy November 22, 2012

Previously Presented:

Steve Glusman
Director, Advanced Mobility
Advanced Boeing Military Aircraft
AHS Dinner Presentation
March 8, 2011 Towne House Restaurant, Media, PA
AIE Military Rotorcraft Conference
June 7, 2011 Washington, DC

Hal Rosenstein
Chief Engineer, Advanced Mobility
Advanced Boeing Military Aircraft
Technical University of Munich
June 27, 2011 Munich, Germany
V/STOL Aircraft and Propulsion Concepts

- We have done it all before
- Except for helicopters, only a handful of V/STOL concepts have reached production
Competition Decreasing -- Derivative Modifications Increasing

Impact of increasing cost and complexity

Impact of budget constraints

New Starts

<table>
<thead>
<tr>
<th>1960s</th>
<th>1970s</th>
<th>1980s</th>
<th>1990s</th>
<th>2000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-46D/F</td>
<td>CH-46E</td>
<td>OH-58D</td>
<td>CH-47F</td>
<td>VH-71A</td>
</tr>
<tr>
<td>CH-47B/C</td>
<td>CH-53E</td>
<td>UH-60L</td>
<td>UH-1Y</td>
<td>ARH-70A</td>
</tr>
<tr>
<td>CH-53D</td>
<td>CH-47D</td>
<td>MH-47E</td>
<td>AH-1Z</td>
<td>UH-72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MH-60K</td>
<td>AH-64D</td>
<td>MH-47G</td>
</tr>
</tbody>
</table>

Derivative Modifications

<table>
<thead>
<tr>
<th>1960s</th>
<th>1970s</th>
<th>1980s</th>
<th>1990s</th>
<th>2000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC-142A*</td>
<td>CH-46A</td>
<td>XH-59A*</td>
<td>CH-53A</td>
<td>CH-47D*</td>
</tr>
<tr>
<td>X-22*</td>
<td>CH-47A</td>
<td>XV-15*</td>
<td>AH-1*</td>
<td>MH-60K*</td>
</tr>
<tr>
<td></td>
<td>CH-53A</td>
<td>AH-64A</td>
<td>AH-64B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AH-1*</td>
<td>UH-60A</td>
<td>UH-60M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AH-56*</td>
<td>XCH-52A*</td>
<td>MH-47G</td>
<td></td>
</tr>
</tbody>
</table>

Program Cancelled
- COTS Commercial Off-The-Shelf
- Technology Demonstrator or Prototype

Note:
- X indicates cancellation.
- * indicates technology demonstrator or prototype.

Date: 11/24/2012
U.S. Jet Fighter vs. Rotorcraft Generations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Gen Fighters</td>
<td>2nd Gen Fighters</td>
<td>3rd Gen Fighters</td>
<td>4th Gen Fighters</td>
<td>5th Gen Fighters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1st Gen Rotorcraft**
 - Subsonic
 - Guns
 - No radar

- **2nd Gen Rotorcraft**
 - Supersonic
 - Radar
 - Air-air missiles

- **3rd Gen Rotorcraft**
 - Maneuverability
 - Adv. weapons integration
 - Survivability

- **4th Gen Fighters**
 - Maneuverability
 - Look down, shoot down capability

- **5th Gen Fighters**
 - Stealth
 - Fly-by-wire
 - Net centric
 - Thrust vectoring

- **1st Gen Fighters**
 - Subsonic
 - Guns
 - No radar

- **2nd Gen Fighters**
 - Supersonic
 - Radar
 - Air-air missiles

- **3rd Gen Fighters**
 - Maneuverability
 - Adv. weapons integration
 - Survivability

- **4th Gen Fighters**
 - Maneuverability
 - Look down, shoot down capability

- **5th Gen Fighters**
 - Stealth
 - Fly-by-wire
 - Net centric
 - Thrust vectoring

- **1st Gen Rotorcraft**
 - Piston engine
 - Wood blades
 - Vc < 90kts

- **2nd Gen Rotorcraft**
 - Turbine engine
 - Metal blades
 - Vc ~ 130 kts

- **3rd Gen Rotorcraft**
 - Composite blades
 - Survivability
 - Adv. weapons integration
 - Vc ~ 150 kts

- **4th Gen Fighters**
 - Higher speed
 - Fly-by-wire
 - Composites
 - Signature reduction
 - Vc > 170 kts

11/24/2012 12-130 | 4
50 Years of DoD Aviation Investment
1960 – 2010

RDT&E

$321 B
(FY 2011 $)

Procurement

$926 B
(FY 2011 $)

83% / 17% investment split between fixed- and rotary-wing
US Army Aviation S&T Investment

Constant 2008 Dollars (Millions)

Technology Readiness Level (TRL) = 1 to 4

Downward trend in DoD rotorcraft investment over past 20 years!
A Look at Today

There hasn’t been this much excitement in the rotorcraft industry since the 1960’s

Piasecki X-49A SpeedHawk (2007)

Sikorsky X2 Technology Demonstrator (2008)

Eurocopter X3 (2010)

Boeing/DARPA Disc Rotor
Have we made progress?

Co-Axial Compound Helicopters

Sikorsky Light Anti-Submarine Attack Vehicle – LAAV Concept (1968)

Sikorsky XH-59A Advancing Blade Concept (ABC™) (1975)

Sikorsky LHX Concept (1982)

Sikorsky X2 Technology Demonstrator (2008)
Have we made progress?

Single Rotor Compound Helicopters

Bell UH-1 Model 533 HPH III – 274.6 knots (316.0 mph) (1969)

Eurocopter X3 – 180 knots (207 mph) (2010)
Have we made progress?
Piasecki Compound Helicopters with the Vectored Thrust Ducted Propeller

Piasecki 16H-1 Pathfinder (1962)

Piasecki 16H-1A Pathfinder II (1966)

X-49A SpeedHawk (2007)
Have we made progress?

Compound Tandem Rotor Helicopters

Chinook Compound Concept (1961)

Unloaded Lift Offset Rotor – ULOR (Ongoing Design Project)

CH-46 Tandem Wing Compound (mid-1960s)

Model 347 Tandem Compound (early 1970s)
Have we made progress?

Disc Rotors

Jacob Ellehammer – first ‘Disc-Rotor Helicopter’ concept to fly (1912)

Ellehammer – Disc-Rotor wind tunnel model and test (1935)

Jonathon Caldwell – ‘Disc-Rotor Plane’ (1934)

Boeing/DARPA Disc Rotor (Ongoing Design Project)

SOURCE: 100 YEARS OF DISC-ROTOR RESEARCH - A BRIEF HISTORY, ANGELO N. COLLINS and MICHAEL J. HIRSCHBERG, Presented at the International Powered Lift Conference, October 5-7, 2010, Philadelphia, PA
Have we made progress?

Tilt Rotors

Baynes “Heliplane”
(1938)

Platt-LePage Tilt Rotor Design
(1940s)

Transcendental Model 1-G
(1954)

Transcendental Model 2
(1957)

Bell XV-3
(1955)

Bell XV-15
(1977)

USMC/Bell Boeing MV-22B Osprey
(1989)

In production and operational with the U.S. Marine Corps and U.S. Air Force, the V-22 recently surpassed 100,000 flight hours!
What is going on?

“Recent” Technology Advancements

- For the most part, it is not the configurations that are advancing it’s the Technology Enablers

- All-composite rotorcraft

- Advanced airframe and blade tip shapes [1990s]

- Advanced crew stations [1980s]

- Optimal Speed Rotor [early 2000s]

- CFD and other Analysis Tools/Techniques

- Digital fly-by-light [1980s]

- Electric actuation [late 1990s]

- Higher harmonic control [1980s]

- What is going on?

- For the most part, it is not the configurations that are advancing it’s the Technology Enablers

- Active vibration control [1980s]

- Survivability enhancements [1980s]

- Computing Power

- What technology breakthroughs have been demonstrated in this decade?

HHC Off

HHC On

Analysis Techniques
A generational leap desired in range and speed – all at 6,000 ft/95°F.
Joint Multi-Role (JMR) Program
(continued)

Maximize commonality to improve affordability

JMR program appears to be the future of DoD Vertical Lift
Back to the Future – Prototyping
[e.g. Opportunity]

Model 347 → Fly-by-Wire
XH-59A → Advancing Blade Concept
X2 → Speed, maneuverability

XV-15 → V-22
Model 360 → V-22 composite airframe
X-49A → Speed

ARTI → RAH-66
S-76B Fantail → RAH-66 anti-torque system
X3 → Speed
Hurdles

- **Existing fleet modernization programs:**
 - Bell Boeing V-22 Osprey
 - Boeing AH-64D Apache
 - Boeing CH-47F Chinook
 - Sikorsky UH-60M Black Hawk

- **Fixed-wing emphasis**
- **Customers collaboration**
- **International competition**
- **Possible loss of critical skills**

The US Industry Faces a Precarious Future

The US Gov't Rotorcraft Deliveries

Pre-MS B **Derivative Development** **New Start Development**

Source: Boeing analysis of PB09
Exciting projects are already under-way

Unloaded Lift Offset Rotor – ULOR

DARPA Mission Adaptive Rotor – MAR

DARPA Disc Rotor
ULOR Configuration Features

Unloaded Lift Offset Rotor – ULOR

- High speed cruise > 250 knots
- More maneuverable than H-47
- Underfloor fuel (2,000 gal 7570.8 liters) in crashworthy cells
- Advanced 4-bladed rotor 60 ft [18.29m] diameter
- 8-ft (2.44m) diameter propellers
- Same internal cabin dimensions as H-47
 30 ft 2 in. [9.19m] Length X 6 ft 6 in. [1.98m] Height X 7 ft 6 in. [2.29m] Width
- Same payload as H-47 with greater range
- Retractable landing gear
- Similar external dimensions as H-47

ULOR Mission Scenario
Boeing/DARPA
Edgewise Mission Adaptive Rotor (eMAR)
Features on a Notional New Design Rotorcraft

- Variable rotor speed
- Swashplateless rotor system
- Active blade twist
- Active leading edge
- Active trailing edge
- Active tip sails
DARPA/Boeing/VPI
Disc Rotor Concept Study

- High-speed VTOL/troop assault
- (2) turboshaft engines or turboshaft/turbofan combination
- Unique 350+ knots speed capability
What will next generation rotorcraft look like?

Technology Demonstrators and Prototypes have worked very well in the past...

- Active drag reduction
- Mission Adaptive Rotor technologies
- Ultra-low vibration and noise
- Adaptive self-healing structures
- Next generation digital flight controls
- Single-pilot crew station
- Advanced engine and hybrid propulsion technologies
- Next generation advanced NOTAR
- Morphing wings
Parting Comments
Questions?

Thank you.