CYBERSECURITY IN AIR AND SATELLITE NAVIGATION

NEW THREATS IN THE FIFTH DOMAIN

CORRADO GIUSTOZZI

December 3rd, 2013

CESMA - Tor Vergata

1

Topics

- ENISA at-a-glance
- (In)security in the cyber domain
- A few case studies
- The space segment
- Conclusions

Disclaimer:

I am not talking on behalf of ENISA any thoughts or opinions I will express today are just my own

December 3rd, 2013

CESMA - Tor Vergata

2

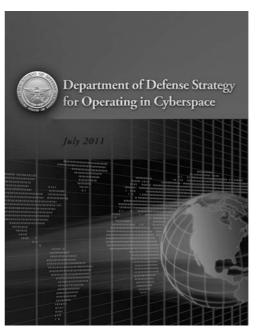
ENISA in brief

- European Network and Information Security Agency:
 - created in 2004, operational since September 1st, 2005
 - headquarter in Heraklion (Crete), offices in Athens (since 2013)
 - governing bodies: Executive Director, MB, PSG
- Mission:
 - to improve network and information security in the EU
 - to contribute to the development of a culture of network and information security for the benefit of the citizens, consumers, enterprises and public sector organisations of the EU
 - to assists the Commission, the Member States and the business community in meeting the requirements of network and information security, including present and future EU legislation
- to serve as a centre of expertise for both Member States and EU Institutions to seek advice on matters related to network and information security
 December 3rd, 2013 CESMA - Tor Vergata

What does ENISA do?

- What it does not do:
 - not an operational/military/police agency
- What it is doing:
 - mainly focused on: National Cyber Security Strategies, Critical Information Infrastructure Protection, Awareness Raising
 - promoter and organizer of the Pan-European Cybersecurity exercise «Cyber Europe 2010» and «Cyber Europe 2012» and the joint EU-US Cybersecurity exercise «Cyber Atlantic 2011»
 - promoter of the creation of an European/national CERT network
- What it is going to do:
 - new mandate (2013-2018) with broader objectives
 - key player in the European Cybersecurity Strategy
 - liaisons with LEAs for better cybercrime contrast
 - liaisons with the military for better cyberdefense capabilities

December 3rd, 2013 CESMA - Tor Vergata


THE FIFTH DOMAIN: A WORLD ON ITS OWN?

VIRTUAL THREATS
IN THE REAL WORLD

December 3rd, 2013 CESMA - Tor Vergata 5

The Fifth Domain is here...

ecember 3rd, 2013 CESMA - Tor Vergata

CESMA - Tor Vergata

...but is not an island

- Cyberspace is not a world apart, but the connected set of all the systems and networks on the planet
- The other four Domains are linked and tightly interconnected through cyberspace, therefore the Fifth Domain is critical to each of them:
 - Command, Control and Communications all flow through it
 - threats in the Fifth Domain can affect targets in other domains
- Cyber threats are global and pervasive, not limited to the Cyberspace itself in that they may affect real-world infrastructures
- The benefit-cost ratio of a terroristic cyber attack is getting higher and higher because of the inherent weaknessess affecting many critical infrastructures

December 3rd, 2013

CESMA - Tor Vergata

7

Do we really need security?...

- In the good ol' days we didn't need security
 - ...or, did we?
- The first Internet was designed with no security in mind
 - everyone was supposed to act in good faith
- The same happened with many later technologies, which didn't take into account threats from fraudsters, criminals, terrorists, ...
- Assumption was: "we don't need security because...":
 - ...we are not doing anything secret/valuable
 - ...we don't have enemies/adversaries
 - ...physical security is enough (no or difficult remote access)
 - ...the system is so complex/obscure that no one can possibly tamper with it (lack of money/knowledge/technology)

December 3rd, 2013

CESMA - Tor Vergata

8

An easy game

- As in the real world, cyber adversaries do their job by exploiting relevant weaknesses in the infrastructures
- Technical weaknesses:
 - insecurity by design (weak/no authentication, no cryptography...)
 - protocols are often flawed and/or bugged
 - systems are bugged and/or not enough protected
- Complexity weaknesses:
 - systems/networks complexity is overwhelming
 - there are simply too many people/devices on the Net
 - traffic volume is becoming unmanageable
- Human/behavioural weaknesses:
 - no awareness and/or security culture by the end users
 - fundamental assumption is good faith on everyone else's part

December 3rd, 2013 CESMA - Tor Vergata

FOUR CASE STUDIES

NOTEWORTHY FACTS
AND INCIDENTS

December 3rd, 2013 CESMA - Tor Vergata 10

Case #1: cellular networks

- 1G (TACS) network was "naively" designed:
 - assuming that all users would be in good faith
 - not taking into account the risk of fraudsters
- Two major design flaws:
 - voice was transmitted in the clear
 - allowing for intentional or unintentional eavesdropping
 - controls (handshake/handover) were transmitted in the clear
 - allowing for easy "terminal cloning"
- This lack of protections led to huge losses:
 - big black market for "cloned" terminals
 - phone bills charged to wrong users, payed by the operator
- 2G (GSM) network introduced security measures:
 - control and voice channel protected by encryption

December 3rd, 2013 CESMA - Tor Vergata 11

Case #2: Internet traffic routing (1/2) | The property of the

Case #2: BGP "incidents" (2/2)

- BGP (RFC4271, 1994) is the protocol used by Autonomous Systems to exchange routing information:
 - BGP is not secure (no authentication, no ruling authority)
 - BGP is based on good faith on everyone else's part
- Incident #1: Youtube 2008
 - on Sunday, 24 February 2008, 18:49 (UTC) AS17557 (Pakistan Telecom) announced 208.65.153.0/24 for 2 minutes
- Incident #2: China TelCo 2010
 - in April 2010 AS23724 (China Telecommunications Corporation) announced for about 15 minutes ~37,000 unique prefixes, mostly western (China TelCo originates 40 prefixes)
- Incident #3: Google DNS 2010
 - in July and August 2010, the prefix 8.8.8.0/24 was "hijacked" for a while by AS42473 (Austria) and by AS30890 (Romania)

December 3rd, 2013 CESMA - Tor Vergata 13

Case #3: SCADA vulnerabilities

- SCADA systems have traditionally been designed to be safe but not secure, their security being a by-product of:
 - systems usually being accessible only locally
 - systems usually being very specific, obscure and complex
- Then Stuxnet arrived:
 - targeted at Siemens Simatic S7-300 (WinCC and PCS 7 OSs)
 - propagated either off-line (USB key) or on-line (local network)
 - undetected for months until escaped to the outside by mistake
 - patch took Siemens 675 days to be released!
- The SCADA "security" assumptions are no longer valid:
 - SCADA systems are often connected to non-secure networks
 - SCADA systems and protocols are inherently not secure
 - SCADA knowledge is no more a well-kept trade secret

December 3rd, 2013 CESMA - Tor Vergata 14

Case #4: UAV hijacking

- In July 2011 with a well-crafted attack Iran forced an US RQ-170 drone to safely land on Iranian territory
- The clever attack was conducted in two phases:
 - first the command and control satellite communications used by the drone were jammed, forcing it to switch to autopilot mode
 - then a spoofed (fake) GPS signal, "louder" than the real one, was transmitted to the drone advertising false coordinates
- In this way the drone was convinced that it was in Afghanistan, close to its home base:
 - at that point the drone's autopilot triggered the landing
 - but rather than landing at a US military base, the drone landed instead at an Iranian military landing zone where it was safely and harmlessly captured

December 3rd, 2013 CESMA - Tor Vergata 15

SATELLITE SECURITY

A FEW INCIDENTS HAVE ALREADY HAPPENED

December 3rd, 2013 CESMA - Tor Vergata 16

CESMA - Tor Vergata

Satellite incidents (1/2)

- In July 2004, China's state television broadcasts were interrupted for nearly 15 minutes by an unauthorized broadcast in support of Falun Gong
 - the interference occurred on signals for APSTAR 6 satellites and affected 25 channels, including the 12 operated by staterun CCTV
- On October 20, 2007, Landsat-7, a U.S. earth observation satellite jointly managed by the National Aeronautics and Space Administration and the U.S. Geological Survey, experienced 12 or more minutes of interference
 - this interference was only discovered following a similar event in July 2008

December 3rd, 2013

CESMA - Tor Vergata

17

Satellite incidents (2/2)

- On June 20, 2008, Terra EOS (Earth Observation System) AM-1, a National Aeronautics and Space Administration-managed program for earth observation, experienced two or more minutes of interference
 - the responsible party achieved all steps required to command the satellite but did not issue commands
- On July 23, 2008, Landsat-7 experienced 12 or more minutes of interference
 - the responsible party did not achieve all steps required to command the satellite
- On October 22, 2008, Terra EOS AM–1 experienced nine or more minutes of interference
 - the responsible party achieved all steps required to command the satellite but did not issue commands

December 3rd, 2013

CESMA - Tor Vergata

18

Aftermath

- The above-mentioned affected US satellites are used for earth climate and terrain observation
- The attackers may have used the Internet connection to get into the ground station's information systems
- Access to a satellite's controls could allow an attacker to damage or even destroy the satellite
- An attacker could also deny or degrade as well as forge or otherwise manipulate the satellite's transmission

December 3rd, 2013 CESMA - Tor Vergata 19

CONCLUSIONS

LESSONS LEARNED AND FINAL THOUGHTS

December 3rd, 2013 CESMA - Tor Vergata 20

Final thoughts

- The world has changed:
 - everything is valuable for someone / we all have adversaries
 - attack potential has grown, cyber attacks are easier to do
- We cannot repeat with modern critical infrastructures the naive mistakes we made with earlier technologies:
 - lessons learned by ETACS and SCADA
 - systems need to be not only safe and robust but also secure (ie at least tamperproof)
- Always require "security by design":
 - secure protocols based on mutual strong authentication
 - data/control channel protection (encryption)
 - redundancy, validation, integrity checks
 - secure coding, code review, security audits

December 3rd, 2013 CESMA - Tor Vergata 21

CYBERSECURITY IN AIR AND SATELLITE NAVIGATION

THANK YOU FOR YOUR ATTENTION

C.GIUSTOZZI@ACM.ORG

December 3rd, 2013

CESMA - Tor Vergata

22